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D E T E R M I N A T I O N  OF T H E  A E R O D Y N A M I C  C H A R A C T E R I S T I C S  

OF A I R C R A F T  IN T H E  T R A N S O N I C  V E L O C I T Y  R A N G E  

M. A. Naida and A. S. Fonarev UDC 533.6.011 

The problem of determining the integral aerodynamic characteristics of aircraft as a whole in the 
transonic velocity range is considered. An approximate method of their calculation is developed 
using the nonlinear transonic theory of small perturbations for three-dimensional flow over a 
body. The method of investigation consists in separating the flow region into two subregions 
(outer and inner), applying numerical methods of integrating the equations in those regions, 
and joining the solutions. The Murman-Cole method of calculating the pressure drag of an 
isolated wing is generalized to the case of a combination of wing and fuselage. 

In the study, within the framework of the theory of small perturbations, of three-dimensional, transonic 
fl..ws around thin wings with an aspect ratio on the order of unity and of their combination with a fuselage 
whose maximum cross-sectional size is small compared to its length, it is possible to substantially simplify the 
statement of the problem of streamline flow by using the technique of joining asymptotic expansions [1]. It 
was shown in [1] that there are two regions in each of which the flow is described by different boundary-value 
problems. In the inner region (adjacent to the body), the leading term of the expansion of the potential of 
the perturbed velocity satisfies a linear Laplace equation in the planes perpendicular to the body's axis. In 
the outer region, the solution at large distances has an axisymmetric structure and coincides in the leading 
term with the solution of the problem of flow over an equivalent body of revolution. 

The calculation of three-dimensional flow thus comes down to a joint solution of two boundary-value 
problems for equations in which the unknown function depends on only two spatial variables. Unfortunately, 
in this case, it is impossible to determine the aircraft's lift, since it is identically zero owing to the axial 
symmetry of the outer flow. This approach is therefore used mainly to find the pressure distribution over the 
surface of an aircraft having a small lift [2]. 

A new statement of the problem, free of the aforementioned drawback, was proposed in [3] to calculate 
transonic flow over an aircraft having a wing of large aspect ratio. In accordance with [3], in the inner region, 
ill which the flow, as before, is described by the Laplace equation in planes transverse to the body's axis, one 
places not the entire aircraft but only the fuselage with the tail assembly and part of the wing. The rest of 
the wing is in the outer region, in which the potential of the perturbed velocity satisfies a three-dimensional 
analog of the Khrm~n equation. The integral aerodynamic characteristics of the entire aircraft are determined 
in such an approach by integrating the pressure distribution over the surface of the body in both regions and 
then summing the results. 

It should be noted that the accuracy of this method of calculating aerodynamic characteristics can be 
affected by errors due to local violations of the premises of the theory of small perturbations in the vicinity of 
the leading blunt edges of the wing and the tail assembly, near the fuselage nose, etc. As calculations show [4], 
in determining the lift coefficients and the pitching moment, the influence of these local errors is slight and 
the results have acceptable accuracy. A different situation arises in determining the body's drag by numerical 
integration of the pressure distribution over its surface. It is well known [5] that the result of numerical 
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integration in this case may prove inaccurate and even negative, since in the integration one has to calculate 
the difference between two large quantities but with close values. To increase the accuracy in determining the 
drag coefficient of wing profiles and thin wings in [5], the procedure of integrating the pressure distribution 
over the body's surface was changed to another procedure that does not use integration at points of possible 
violation of the premises of the theory of small perturbations. A similar approach was used in [6] to calculate 
the wave drag of bodies of revolution. In [7, 8], the method of [5] was generalized to the case of nonsteady 
transonic flow over thin wing profiles and bodies of revolution. 

In the present work, we consider the problem of determining the integral aerodynamic characteristics 
of an aircraft as a whole in the transonic velocity range. An approximate method of their calculation is 
developed, based on the use of the nonlinear transonic theory of small perturbations for three-dimensional 
flow over bodies. The method of investigation consists in separating the flow region into two subregions (outer 
and inner), applying numerical methods of integration of the equations in those regions, and joining the 
solutions. The Murman-Cole method of calculating the pressure drag of an isolated wing is generalized to the 
case of a wing-fuselage combination. 

The following aerodynamic characteristics were calculated: drag, lift, and pitching moment for a specific 
aircraft makeup of fuselage, swept wing, and tail assembly. A comparison is made with experimental data. 

1. Fo rmula t ion  of  t h e  P r o b l e m .  Let an inviscid, transonic gas stream with a velocity Uoo at infinity 
flow over the aircraft. We place the origin of the right-handed Cartesian coordinate system at the nose of the 
fuselage and direct the z axis from the nose toward the tail section, the y axis upward, and the z axis along 
the wingspan (Fig. 1). We also consider three-dimensional transonic flows in which the compression shocks 
that develop are weak, so that the changes in entropy in gas particles crossing their fronts can be neglected. 
In this case, the gas flow is described by the velocity potential 

= Uool(z cos a + y sin a + ~), 

where I is the length of the fuselage, a is the angle of attack, and ~o is the potential of the perturbations. 
Within the framework of the theory of small perturbations, the dimensionless potential ~o satisfies the three- 
dimensional analog of the Kb.rm~.n equation, 

( ( c l  + + + = 0. (1.1) 

Here C1 = 1 - M 2 and C2 = - ( 7  + 1)M2/2; all the independent variables are normalized to I. 
Let the angle of yaw be zero. Since the aircraft is symmetrical about the x y  plane, we consider the 

flow only in the half-space z/> O. Along the z axis we isolate a parallelepiped P,  inside which we place the 
fuselage and tail assembly and part of the wing (Fig. 1). In accordance with the asymptotic theory of [1], 
the potential of perturbations within P satisfies the Laplace equation in any plane x = const. To emphasize 
the two-dimensional character of the solution, we introduce a new designation of the perturbation potential 
r y, z) for this region. In this case, we have 

eyy + ezz = 0. (1.2) 
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Outside of P the flow is three-dimensional and is described by a potential ~ that satisfies Eq. (1.1). To join 
the inner and outer solutions at the surface a P  of the parallelepiped, we set up the condition of continuity of 
the potential and its derivative along the normal to the faces of P: 

= r x ,y , z  E OP; (1.3) 

~,~ = r z , y , z  E OP. (1.4) 

At the body's surface, the perturbation potential must satisfy the condition of nonpenetration. For the part 
of the aircraft inside P,  the nonpenetration condition V-  N = 0 (N is the vector of the unit outward normal 
to the body's surface) takes the form 

(cosa + ex)gx + (sina + ey)Ny + e z g ,  = 0, (1.5) 

where Nz, Ny, and Nz are the projections of N onto the respective axes of the Cartesian coordinate system. 
Let the angle of attack be small. Then, in accordance with the theory of small perturbations, Eq. (1.5) reduces 
to 

gx + aNy = - r  - ezgz.  (1.6) 

Since we have (r + r  2 + N~ = r (n is the projection of N onto the plane x = const), the 
condition of nonpenetration at the body inside P has the form 

en = - ( g ,  + aN,) /~ /N 2 + g 2. (1.7) 

Condition (1.7) is specified directly at the body's surface. 
Let us now consider the part of the wing that projects beyond P. Since Nz << Nz and Nz << Ny for 

the wing, relation (1.5) reduces to the equation Nx + (a + Ty)Ny = 0. Let the wing surface be described by 
the equation y = y(z, z). We then have Nx/Ny = -y=. The condition of nonpenetration at the wing is thus 

= yz - a .  (1.8) 

In contrast to (1.7), condition (1.8) is not set at the upper and lower wing surfaces but pertains to the plane 
y = yw midway between them. A vortex sheet lies downstream from the trailing edge of the wing. In the theory 
of small perturbations, it does not depart from the plane y = yw and extends to infinity. The discontinuity in 
the potential in the transition through the sheet is determined by the equation 

~ ( x ,  y,o + 0, z) - tO(x, Yw - 0, z) = [~] = F(z) ,  (1.9) 

where F is the velocity circulation near the corresponding wing cross section. 
In the Trefftz plane, as x ~ oo, the perturbation potential satisfies the Laplace equation and condition 

(1.9) on the segment y = yw, d ~< z ~< L [L is the half-wingspan and d is the width of P (Fig. 1)]. The 
following conditions are satisfied in the plane of symmetry z = 0: 

r  = 0; (1.10) 

~ = O. (1.11) 

Since the outer problem is solved numerically by the time-like iteration method using an equation 
containing nonsteady terms, to specify the conditions at the outer boundaries of the calculation region (except 
for the Trefftz plane) we can use the method described in [8]. As a result, we obtain 

- + = 0 as y - o o ;  

Moo~py+ C + M o o ~ z = O  as y - -+oo ;  

+ , / - r  + M o o ~ = O  as z ~ o o ,  

(1.12) 

(1.13) 

(1.14) 

(1.15) 
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where C = C1 + 2C2~ox. 
We thus formulate a mixed boundary-value problem with boundary conditions (1.3), (1.7), and (1.10) 

in the inner region for Eq. (1.2). In formulating the boundary-value problem in the outer region, we use 
relations (1.4), (1.8), and (1.11)-(1.15) as the boundary conditions for Eq. (1.1). The distribution of the 
potential ~o satisfying the Laplace equation and condition (1.9) is specified in the Trefftz plane. 

After the perturbation potential has been determined, the pressure coefficient in the inner region has 
the form [9] 

cp = - 2 r  r - r 2 (1.16) 

and the pressure coefficient in the outer region has the form 

c~ = -2~x. (1.17) 

2. D e t e r m i n a t i o n  of A e r o d y n a m i c  Charac ter i s t ics .  Suppose that the boundary-value problems 
formulated in the outer and inner regions have been solved. Let us determine the integral aerodynamic 
characteristics of the aircraft: the lift cy, the pressure drag c~, and the pitching moment mz. In the associated 
coordinate system adopted, these characteristics are found as follows: 

2Fy = - 2  f f  c~(N- j) ds; (2.1) C~ = pooU212 
$ 

c, = poo2Fzu 212  -~ - 2  ff, c~(N. i) ds; (2.2) 

2M~ 
= - 2  j)Cx - x , )  - ( N .  i ) ( y  - y , ) )  ds .  (2 .3 )  mz = pocSn 13 

8 

Here z.  and y. are the coordinates of the point in the plane z = 0 about which the moment is calculated. Let 
us first consider the inner region. In this case, s is the surface area of the part of the aircraft inside P, and 
the coefficient ~ is related to the perturbation potential by (1.16). To determine the vector N, we introduce 
a parametric representation of the aircraft's surface that follows from a property of the statement of the inner 
boundary-value problem. We change to a cylindrical coordinate system and as the first parameter we take 
the angle/~ reckoned clockwise from the y axis, looking from the nose of the fuselage. The second parameter 

coincides identically with z. The Cartesian coordinates of any point of the surface are then expressed in 
terms of the respective parameters as follows: 

= ~,  y = y ( ~ , ~ ) ,  z = z ( ~ , ~ ) .  

Let r - zi Jr yj "F zk be the radius vector of some point on the surface. If this point is not singular, there are 
two vectors, not parallel to each other, r/~ and r~, that lie in the plane tangent to the surface at the given 
point. In this case, their normalized vector product yields the vector N: 

N = r~ x r~ = (ypz~ - y~zp)i + zpj + y~k 
• - y  p)2 + + 

Since an element of surface area is defined by the equation ds = ]rp • r~[ dfl d~, the expressions for the integral 
aerodynamic characteristics in the inner region take the form 

1 ~r 

O 0  

1 

Cx 

0 0 
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= --2 ] J  - - -- y zp)(y -- y.))dZd . (26 )  
0 0 

Let us now consider the outer region. To determine cy, cz, and m~ from Eqs. (2.1)-(2.3) in this case, 
we must understand s to be the surface area of that part of the wing that projects beyond P, and % is 
calculated from (1.17). If the wing surface is given by the equation y = y(x, z), the unit normal vector is 

N = ( - y z i  + j - yzk)/ /1 + + 
We shall determine the moment relative to a point lying in the wing plane, i.e., y. = yw. In this case, 

substituting the expression for N into (2.1)-(2.3) and taking into account that y2 + y~ << 1 for thin wings, 
we have the equations 

I, xt 

d zl 

L xt 

d zl 

I, xt 

d Zl 

where xl(z) and xt(z) are the coordinates of the leading and trailing edges of the wing; the superscripts plus 
and minus pertain to the upper and lower wing surfaces. 

Integrals (2.4)-(2.9) are calculated numerically. Since the integrands in (2.5) and (2.8) are sign-variable, 
in such an approach the drag in each region is obtained as a small difference between two large quantities, and 
the result of the numerical integration, as noted above, can prove to be inaccurate. To increase the accuracy 
in determining the drag coefficient, one should, using the integral theorem of momenta, change from the 
pressure integral over the body to an expression containing integrals over other surfaces having sign-constant 
integrands. A fairly detailed derivation of such an expression is given in [4] for the case of an isolated wing 
where the region is single and the entire flow is described by the Kb.rmkn equation. Let us see how the result 
of [4] can be generalized to the case of a combination of wing and fuselage with allowance for the features of 
the statement of the boundary-value problems in both regions. 

The components of the velocity perturbations in the outer region satisfy the system of equations 

(Clu+C2u2)z+vy+wz=O, u y - v , = 0 ,  u z - w , = 0 .  (2.10) 

Multiplying the first equation of this system by u, the second by v, and the third by w and adding them, we 
obtain following relation in divergent form: 

(Clu2/2 + 2C2u3/3 - (v 2 + w:~)/2)= + (uv)y + (uw)z = O. 

Integrating this relation over the entire outer region except for compression shocks and using the 
Ostrogradskii-Gauss theorem, with allowance for the asymptotic behavior of the far field [4] we have 

_ / / v 2 + w  2 v +w 21 } : 2 (N- i) + [uv](N- j) + [uw](N- k) ds 
t f \ g  

u 2 2 
- - d y d z  + g {[C, ': '+'~C2u 3 

sh 

ds = 0. (2.11) 
w 0P 

Here the indices t f ,  g, sh, w, and OP denote the Trefftz plane, the trailing end of P, the shock wave, the wing, 
and the lateral faces of P, respectively; N is the outward normal to the respective surface in the outer region; 
the square brackets in the integral over the shock wave denote the difference between quantities before and 
after the shock. With allowance for boundary condition (1.S) and Eqs. (1.17) and (2.8), the integral over the 
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wing represents the pressure drag in the velocity coordinate system for the part of the aircraft in the outer 
region: 

/ f ( (  4 
W 

Let us consider the integral over the shock. To simplify it, we use the equations for the shock that 
follow from the divergent form of system (2.10): 

[Clu + C2u2](N �9 i) + [v](N .j)  + [w](N. k) = 0, - [v] (N.  i) + [u](N-j) = 0, - [w](N-  i) + [u](N- k) = 0. 

Multiplying the first of these conditions by the arithmetic mean (u) over the shock, the second by (v), and 
the third by (w) and substituting them into the integral over the shock, we can reduce Eq. (2.11) to the form 

-- ~ d y d z  7+1M2~12 [u]3dydz+"~ -+ u-~--~ds=O. (2.12) 
tI\g sh 8P 

Equation (2.12) differs from the equation for the pressure drag of an isolated wing in the velocity 
coordinate system [4] by the presence of an integral over the lateral faces of the parallelepiped P, which is 
due to the division of the flow into two regions. To eliminate this integral, let us consider the inner region. 

The components of the perturbed velocity in the inner region satisfy the system of equations 

v ~ + w z = 0 ,  u ~ - v z = 0 ,  u x - w z = 0 .  (2.13) 

Multiplying the first equation of this system by u, the second by v, and the third by w and adding them, we 
obtain the following equation in divergent form: 

-((o ~ + w2)/2), + ( ~ ) ,  + ( - - ) ,  = 0. 
Integrating this equation over the entire inner region except for the compression shocks and using the 

Ostrogradskii-Gauss theorem, with allowance for the conditions at the near and far ends of P, we have 

- / /~  +, ~ ~,, ~= + Z ( - [~ + =---21 ~ "  '~ + [~ ~ + ("o;~" '<~) 
! 8h 

+ N(  ~ i i  o~ ~ d , = o ,  (2.14) 
2 

f #P 

where f denotes integration over the surface of the part of the aircraft inside P and N is the unit normal 
to the corresponding surface in the inner region. Let us consider the integral over the surface of the body in 
more detail. In accordance with condition (1.6), it can be represented in the form 

N {  v2+w2 2 (N.  i) - u (N .  i) - u a ( N - j ) }  ds. 
l 

Since we assume the angle of attack to be small, the drag coefficient in the velocity coordinate system is 
expressed in terms of the drag and lift coefficients in the associated coordinate system as follows: 

c~a = cx + a%. 

Therefore, taking (1.16), (2.1), and (2.2) into account, we can conclude that the integral over the body in 
the inner region represents with accuracy to higher-order terms the pressure drag in the velocity coordinate 
system for the part of the aircraft inside P: 

- i i  ( ( v~ + ~ o) ~ ,~+oo~,,,.~)~ ~'~ ~ +  �9 = _ 7 _ .  
I 
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Let us now turn to the integral over the shock. To simplify it, we use the equations for the shock that follow 
from the divergent form of system (2.13): 

[v](N-j) + [w](N-k) = 0, - [v] (N- i )  + [u](N-j) = 0, - [w](N- i )  + [ul(N. k) = 0. 

Multiplying the first condition by (u), the second by (v), and the third by (w) and substituting them into 
the integrand, we find that the integral over the shockin the inner region is identically equal to zero. Adding 
(2.12) and (2.14), we find the expression connecting the drag of the entire aircraft in the velocity coordinate 
system with the integral over the shock in the outer region and with the integral over the Trefftz plane: 

- -r- +1M  // Eul dyd  + + w ) ydz. (2.15) 
sh t f  

Note that the integrals over the lateral faces OP of the parallelepiped for the outer and inner regions cancel 
out when combined because of conditions (1.3) and (1.4) and the opposite directions of the outward normals. 

The first term in (2.15) differs from zero only if the flow over the aircraft is accompanied by the 
formation of shock waves. It therefore represents the wave drag. The second term in (2.15) represents the 
induced drag, which differs from zero even in the absence of shocks. This expression for the induced drag 
coincides with the corresponding result of the linear theory. 

3. Numer i ca l  M e t h o d s  of Solving the  P rob lem.  We use the panel method [2] to solve the 
boundary-value problem in the inner region. In this method, the combination of profiles of the body's cross 
section and the cross section of the parallelepiped P with the plane z = xi is replaced by a set of flat panels, 
representing simple layers of sources with a constant intensity. The vortex sheet propagating downstream 
from the trailing edge of the part of the wing inside P is modeled by a set of doublet panels lying in the plane 
y = yw and representing double layers of constant intensity, which is found, in accordance with (1.9), as a 
jump in the potential at the trailing edge of the wing. To determine the intensities of the simple layers, we 
use boundary conditions (1.3), (1.7), and (1.10). The boundary conditions are satisfied at the center of each 
panel to obtain a closed system of equations with a compact matrix for any cross section zi  =const .  Since the 
vectors on the right sides in this case depend, in accordance with (1.3), on the distribution of the potential 
in the outer region, which in turn is found by the time-like iteration method, the system of linear equations in 
the inner region must be solved repeatedly. The most laborious part of solving the system of linear equations 
by the Gauss exclusion method is reducing the matrix to triangular form. To avoid the multiple repetition 
of this procedure and increase the accuracy of the solution, one should use the alternative method of LU 

expansion with the choice of a leading element over the entire matrix. In this case, it is sufficient to make a 
L U  expansion of each matrix only once. 

Let us consider the finite-difference method used to solve the boundary-value problem in the outer 
region. Since the problem is solved by the time-like iteration method, we start from the following equation 
containing nonsteady terms: 

2 (3.1) Moo~tt + 2ML~zt = ((6'I + C2~=)~z)x + ~yy + ~. . .  

To approximate the nonlinear part of Eq. (3.1), we use a monotonic Engquist-Osher scheme of first-order 
accuracy [10], and the linear differential operators are approximated by central-difference expressions. The 
resulting system of grid equations is solved using the method of approximate factoring of a three-dimensional, 
finite-difference operator. In this method, the three-dimensional, finite-difference operator is represented 
approximately as the product of three one-dimensional operators [11]. 

Thus, in performing one step of time integration, one must solve one system of linear equations with 
a four-diagonal matrix (the x pass) and two systems of linear equations with three-diagonal matrices (the y 
and z passes). To solve systems of linear equations with diluted matrices of such structure in which all the 
diagonals are adjacent to the main diagonal, the scalar trial-run method is used. Stability of a scalar trial run 
requires that the matrix have the property of diagonal dominance. In making the y and z passes, this property 
is satisfied unconditionally. The higher-order term, from the standpoint of the theory of small perturbations, 

2 Moo~ptt is retained in Eq. (3.1) to ensure diagonal dominance in the x pass. 
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4. R e s u l t s  o f  C a l c u l a t i o n  of  A i r c r a f t ' s  A e r o d y n a m i c  C h a r a c t e r i s t i c s .  Let us consider the flow 
over a model of a passenger aircraft shown in Fig. 2 in the range 0.82 ~ Moo ~ 0.98 with c~ = 0 and 4 ~ The 
model is built on the  center-section scheme, the wing-sweep angle along the leading edge is X = 37~ the wing 
taper is T / -  3.64, the  elongation is ~ = 7.58, and the wing has a symmetric P-114s profile. The tail assembly 
also has a symmetr ic  NACA0010M profile. The stabilizer is set at a - 3  ~ angle to the longitudinal axis of the 
fuselage whose cross sections are circles. 

Figure 3 gives the  distr ibution of the pressure coefficient c? over the wing surface in four cross sections 
(a-d) shown in Fig. 2 for a = 0 and Moo = 0.95. An analysis of Fig. 3 shows that  the  point of minimum 
pressure in cross sections a -d  stands a distance from the trailing edge of the wing of 34.1, 38.3, 49.5, and 52% 
of the length of the  local chord of the profile, respectively. Consequently, in base cross sections of the wing, 
the region of reduced pressure shifts toward the trailing edge of the  wing, while in end cross sections it shifts 
toward the lea~iing edge. 

As a result of this, in base cross sections of the wing, the pressure forces on the lea~ling part of the profile 
increase while those on the  trailing part  decrease. The  pressure drag coefficient therefore takes large positive 
values in these cross sections. In end cross sections, the shift of the region of max imum rarefaction toward 
the nose of the profile decreases the  pressure forces acting on the  nose part of the profile and increases those 
acting on the tail part.  The  pressure drag coefficient thus decreases considerably in the end cross sections, 
becoming negative. In intermediate  cross sections of the wing, the  local drag coefficient changes from positive 
to negative. This  relationship has also been observed experimentally [12, p. 57]. 

Let us examine how this behavior of the c~ distribution over the wing surface affects the accuracy 
in determining the pressure drag coefficient. We determine cz by numerical integration in accordance with 
(2.8). We first integrate over the  z variable, i.e., in wing cross sections z = const. In this case, the integrand 
is sign-variable and the drag coefficient for the cross section is obtained as a small difference between two 
large quantities: the  drag on the  nose part of the profile and the thrust  exerted on its tail part. Since the 
distribution of the  drag coefficients of individual cross sections along the wingspan, as shown above, is also 
a sign-variable function, in the  integration over the z variable, the  drag coefficient of the wing as a whole is 
again obtained as a small difference of two large quantities. As a result, a buildup of numerical errors occurs 
that  can result in the  drag coefficient being obtained with a large error. 

Figure 4 shows calculated and experimental curves of c=, %, and m z  as functions of Moo for a = 0. 
Curve 1 corresponds to the  value of cz calculated by the method of integration over the shock in accordance 
with (2.15), curve 2 is experimental ,  calculated as the difference between the total drags for the given Mach 
number and Moo = 0.6 for the subcritical flow regime, and curve 3 was determined by the method of integration 
over the body, i.e., as the sum of (2.5) and (2.8). The calculated lift is given by curve 4. In the case under 
consideration, the lift is produced mainly by the horizontal tail and has a small negative value because of the 
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negative mounting angle of the stabilizer. A comparison of the calculated curve 4 and the experimental curve 
5 shows that they axe fairly close to each other, except for the range 0.87 ~< Moo <~ 0.92. This discrepancy is 
probably related to the influence of viscosity effects. 

Curves 6 and 7 in Fig. 4 represent the calculated and experimental behavior of the pitching moment. In 
both cases, the pitching moment  is determined relative to the center of gravity of the model, whose position 
is shown in Fig. 2. Because the shape of the fuselage is nearly axisymmetric, the model was built on the 
center-section scheme and y. - y=, the pitching moment is produced mainly by aerodynamic forces exerted 
or. the tail assembly. A comparison of the calculated and experimental functions m=(Moo) suggests that the 
drag forces produced by gas viscosity and not taken into account in this statement of the problem, make a 
considerable contribution to the total moment. We note that the calculated curve understates the value of 
mz ,  since viscous friction exerted on the tail assembly produces a moment of the same sign as the lift. 

Figure 5 gives calculated and experimental dependences of the aircraft's aerodynamic characteristics 
on Moo for a - 4 ~ in the velocity coordinate system. The curves have the same designations as in Fig. 4. 
Since the wing produces a great lift in this case (curves 4 and 5), in determining the experimental values of 
the pressure drag, we must allow for the contribution of induced drag. Therefore, in contrast to the case of 
a = 0, curve 2 was calculated as the total drag at the given Mach number minus the difference between the 
total and induced drags at Moo = 0.6. The induced drag was calculated from Eq. (2.15) by numerical solution 
of the auxiliary problem of streamline flow. 

On the whole, the comparison of experimental and calculated aerodynamic characteristics of the aircraft 
under consideration enables us to conclude that they are in satisfactory agreement. Note that the pressure 
drag is determined with acceptable accuracy only by the method of integration over the shock. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-01- 
01067a). 
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